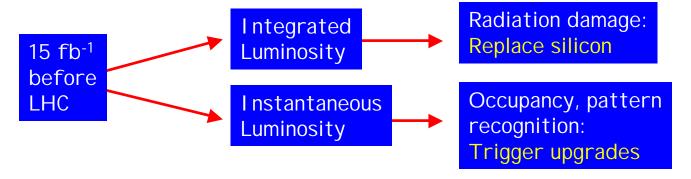
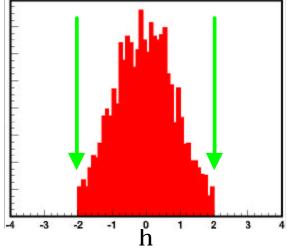


The DØ Silicon Detector for Run IIb

James Fast
Fermilab
For the DØ Collaboration


Outline

- Physics motivation
- Detector design
 - Design considerations
 - Design Overview
 - Expected Performance
- Project status design and prototyping
 - Support structures
 - Readout modules
 - Sensors, readout chips, hybrids
- Summary and conclusions

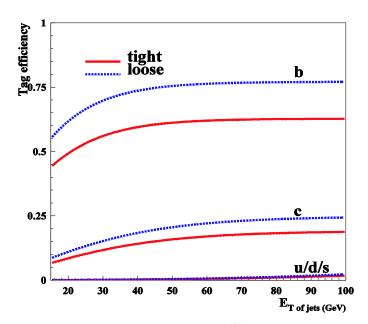

Physics goals drive the upgrade

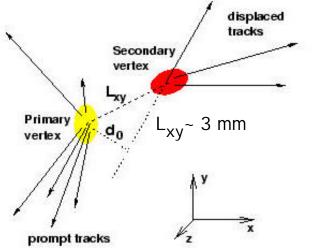
 The Director has set the goal of achieving ~15 fb⁻¹ before the LHC starts producing physics

- The run IIb physics goals require efficient triggering and reconstruction of
 - isolated leptons(including taus if possible)
 - jets
 - ♦ missing E_T
 - b-tagging
- Kinematic range for all objects is typically $p_T > 15$ GeV, |h| < 2

Run IIb: Higgs Potential I

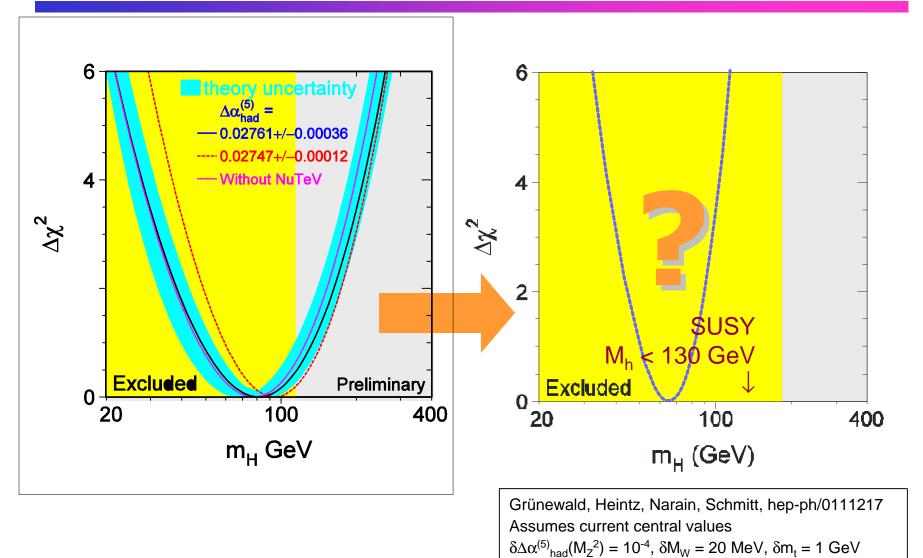
Higgs potential:


- ◆ Luminosity of 8 fb⁻¹
 - \square 3s discovery for $m_H < 122 \text{ GeV}$
 - $\,$ exclusion at 95% CL for $m_H^{} < 135~GeV$ or 150 $< m_H^{} < 180~GeV$
- Luminosity of 15 fb⁻¹
 - \circ 5s discovery for $m_H < 115 \text{ GeV}$
 - □ exclusion at 95% CL for m_H < 185 GeV</p>


Assumptions of Working Group:

- ◆ Loose b-tag: e_b ~ 75% per jet
- ◆ Tight b-tag: e_b ~ 60% per jet

Implications for current Detector


- Need a replacement Silicon Tracker with
- b-tagging efficiency exceeding ~65% per jet at mistag rate < 1%
- Radiation hard to at least ~15 fb⁻¹

Run IIb: Higgs Potential II

Design Considerations

Guiding Principles

- Design must allow for expeditious assembly to be ready in 3 years
- ◆ Minimal shutdown time to allow for accumulation of luminosity before LHC
- ◆ Tight cost control to ensure feasibility of funding the project

Needed improvements over Run IIa detector

- ◆ Add innermost layer at smaller radius (2cm) for better vertex resolution
- ◆ Add outermost layer, fine pitch, larger radius for pattern recognition

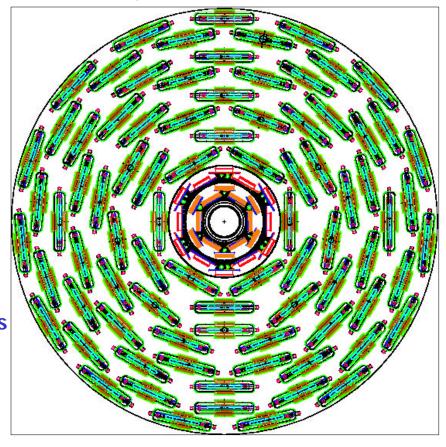
Benefit from Run IIa experience

- ◆ Choose design adequate to achieve physics goals, but do not over-design
- ◆ Modular design, minimize the number of different elements
- Use established technologies, e.g.single sided silicon only

Spatial constraints

- ◆ Installation within existing fiber tracker ▷ Si outer radius of 180 mm
- Full tracking coverage

 - \Box Silicon stand-alone up to |h| < 2.0


Data Acquisition and Silicon Track Trigger

- ◆ Retain readout system outside of calorimeter
- ◆ Total number of readout modules cannot exceed 912
- Respect 6-fold azimuthal symmetry

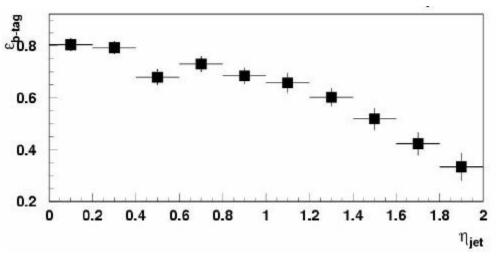
Detector Design Overview

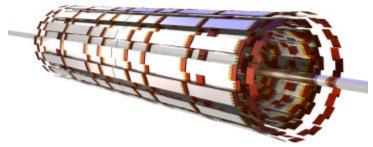
- Six layer silicon tracker, divided in two radial groups
 - ◆ Inner layers: Layers 0 and 1
 - \square 18mm < R < 39mm
 - Axial readout only
 - 50/58 mm readout for LO/L1
 - Assembled into one unit
 - Mounted on integrated support
 - ◆ Outer layers: Layers 2-5
 - \Box 53mm < R < 164 mm
 - Axial and stereo readout
 - □ 60 mm readout
 - Stave support structure
 - ◆ All sensors have intermediate strips
- Employ single sided silicon only,
 3 sensor types
 - ◆ 2-chip wide for Layer 0
 - 3-chip wide for Layer 1
 - ◆ 5-chip wide for Layers 2-5

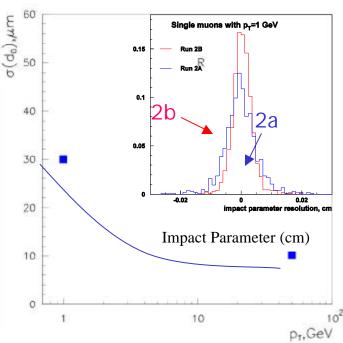
Beampipe inserted through silicon in situ, supported from fiber tracker

Performance of Proposed Detector

Performance studies based on full Geant simulation

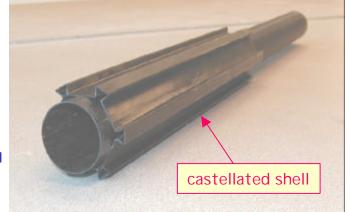

- Full model of geometry and material
- Model noise, mean of 2.1 ADC counts
- Single hit resolution of ~11 mm
- Pattern recognition and track reconstruction

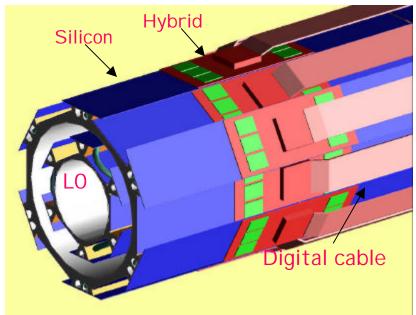

Benchmarks


- $s(p_T)/P_T \sim 3\%$ at 10 GeV/c
- $s(d_0)^2 = 5.2^2 + (25/p_T)^2$ • $s(d_0) < 15 \text{ mm for } p_T > 10 \text{ GeV/c}$

b-jet tagging

efficiency of ~ 65% per jet (WH events)

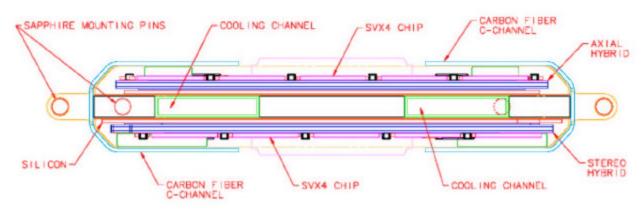




Layer 0 and 1 Supports

Support structure for L0 and L1 by U. of Washington

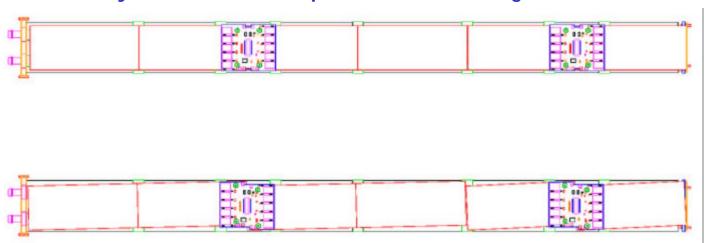
- Layer 0
 - Readout electronics outboard
 - Space constraints force electronics outboard
 - Independent cooling of sensors and hybrids
 - Reduced mass for better vertex resolution
 - ♦ Heat load of < 0.3 W/sensor after 15 fb⁻¹
 - ◆ To control depletion voltage rise from radiation damage, $T_{Si} \sim -10$ °C
- Layer 1
 - Readout electronics mounted on the sensors in L1
 - Power dissipation of 3W/hybrid
 0.5W per SVX is conservative
 - Sensor power negligible
 - ◆ To control noise from radiation damage, T_{Si} < -5 °C



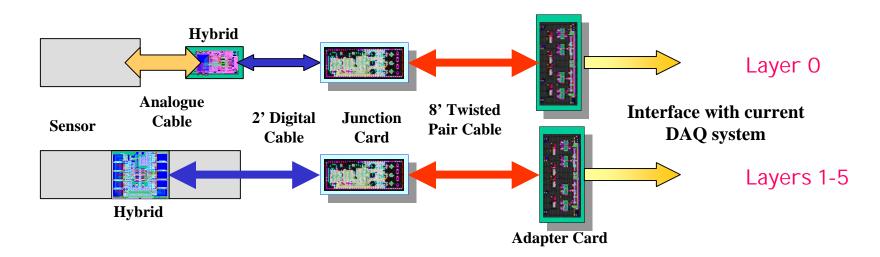
Layer 2-5 Staves

Basic building block of the outer layers is a stave

VIEW LOOKING AT Z=600 END


Stave design

- ◆ One layer of axial readout and one layer of stereo readout
 - □ Stereo angle (1.24° or 2.48°) obtained by rotating sensors
- ◆ Layers separated by a "core" with integrated cooling
 - □ Core contains positioning and reference pins
 - □ Core provides stiffness to flatten sensors
- ◆ C-channels at edges of stave provide bending stiffness
- ◆ Supported by carbon fiber bulkheads at z = 0 & z = 605 mm
- ◆ Total of 168 staves required to populate L2-5

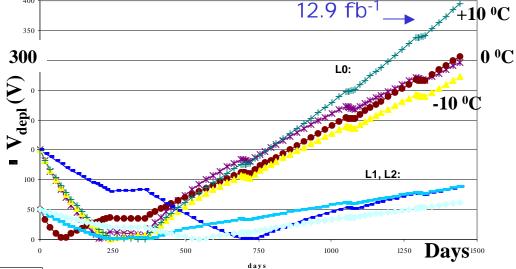

Readout Modules

- Each stave has four readout modules
- Readout module lengths vary with layer and z-position.
 - ◆ For all layers, the modules closest to z = 0 are 200 mm long
 - ◆ Those furthest from z = 0 are 400 mm long
- Four Readout module types
 - ◆ 10-10 (axial, stereo)
 - ◆ 20-20 (axial, stereo)
 - ◆ Ganged sensors will have traces aligned (sensors are 10cm long)
- Each readout module serviced by double-ended hybrid
 - Each hybrid has two independent readout segments

Readout Schematics

- Layers 1-5: Hybrids mounted on silicon
 - Hybrid -> digital cable -> junction card -> twisted pair -> Adapter Card
- Layer 0: Hybrids mounted off-board
 - Analogue Cable -> Hybrid -> digital cable -> junction card -> twisted pair -> Adapter Card
- Readout with SVX4 chips operated in SVX2 mode

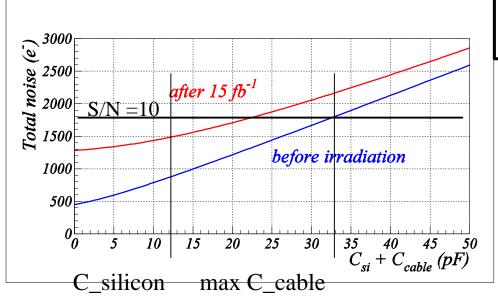
Sensors

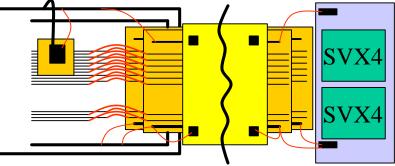

- All sensors are single-sided silicon with axial strips only
- Layer 0
 - ◆ 2-chip wide, 50mm pitch, intermediate strips, 79.4mm cut length
 - ♦ Sensors specifications identical to CDF layer00 (Run IIa) sensors
 - HPK
 - o Proven track record; manufactured CDF sensors, $V_{break} > 700V$, irradiated by DØ
 - o 'Old' CDF Layer00 sensors meet all our specifications
 - ELMA
 - o 60 Lyr 0 sensors produced 47 received: 20 mechanical, 27 currently being tested
- Layer 1
 - ◆ 3-chip wide, 58mm pitch, intermediate strips, 79.4mm cut length
 - Same basic design and specifications as LO
 - Prototypes received from HPK
- Layers 2-5
 - ◆ 5-chip wide, 60mm pitch, intermediate strips, 41.1x100 mm cut dimension
 - Order for prototypes placed with HPK
 - ♦ Sensors very similar to CDF outer layer sensors

Radiation Damage Requirements

 Sensors will be subjected to fluence of 2 10¹⁴ 1 MeV neutron equiv./cm²

- Parameters for detector
 - ◆ V_{depl} after irradiation
 - Signal to Noise ratio
- Requirements
 - S/N ratio > 10 after 15 fb^{-1 ≥}
 - V_{depl} « V_{break} to allow for over-depletion for full charge collection


	Sig	gnal to no	ise ratio	for layer	0	
12 11.5 11 10.5 8 10 9.5 9 8.5 8	5	10 luminos	15 ity (fb-1)	20	25	


Layer	T_silicon (C)				
Layer 0	-10				
Layer 1	-5				
Layer 2	0				
Layer 3	>0				
Layer 4	>0				
Layer 5	>0				

Analogue Flex Cables

- For layer 0 need low mass, fine pitch flex cables to carry analogue signals to hybrids
 - Technically challenging
 - □ Trace width ~ 15 20 mm, pitch 91 mm
 - □ 2 cables offset by 45 mm
 - Noise determined by capacitance
 - \Box C < 0.55 pF/cm
 - □ Dyconex (2nd prototype)

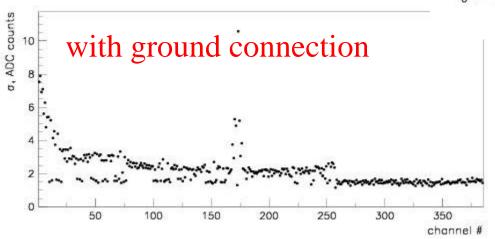
silicon

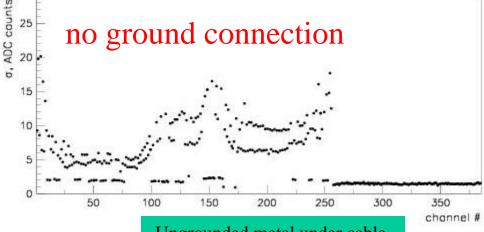
Based on FEA analysis: 16μm trace width -> 0.32 pF/cm

Analogue Flex Cable Tests

Second prototype cables (Dyconex, Zürich)

First batch: 12 cables. Two had 2 open/shorts, remaining were good


Second batch: 27 cables; 16 perfect, 9 had 1 open, 2 = 2 open/short


Built full Layer O module, with Run IIa hybrid readout, 2 chips

connected

Study of cable shielding

- CDF has noise issues in L00
- Cables run over CF structure
- Need to eliminate pickup

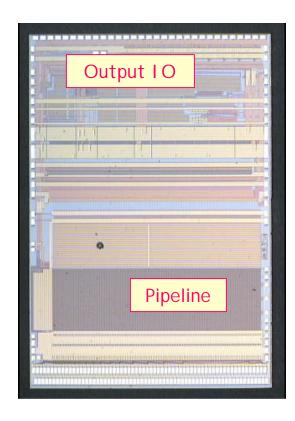
Ungrounded metal under cable

SVX4 Chip

SVX4 full prototype chip

- Successor of SVX2 and SVX3 chip
- DØ and CDF use the same chip
- ♦ 0.25 mm technology, intrinsically rad-hard
- DØ operates the chip in DØ-mode (dead-time)

SVX4 chip works !!


- Major success and gives both projects an excellent head start for full-scale testing of all elements of the detector
- Chip testing at LBL and Fermilab

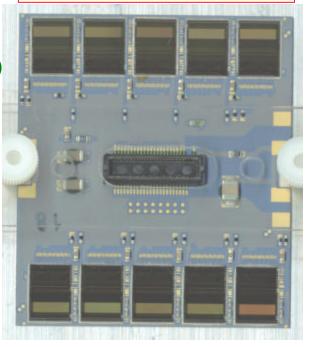
Sample list of verifications done

- ◆ ENC = 300e + 41e/pF C (Fermilab)
- ◆ ENC = 600e + 32e/pF C (LBL)

Known problems

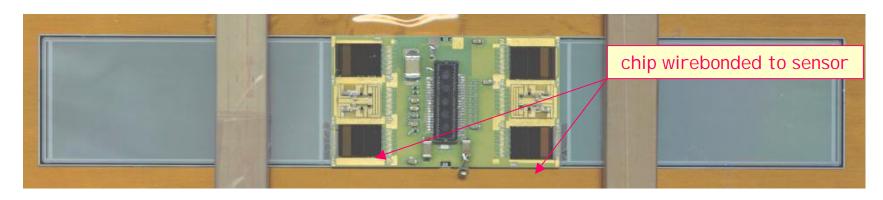
- ◆ Add pull-up to USESEU
- ◆ Add pullup or pulldown to DØ-mode
- ◆ Pull MSB of Chip1D high.
- ◆ Logic changes to FECLK gating/ADC control/FE control in DØ-mode

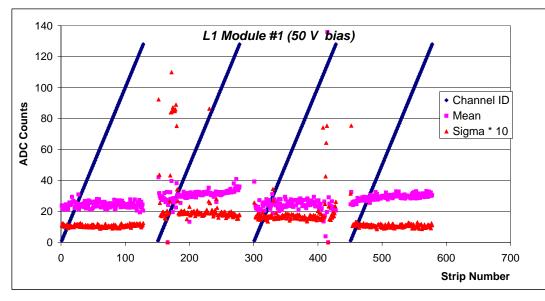
Hybrids


Design

- ◆ BeO substrate with multi-layer circuit on substrate
 - □ 6 Au layers and 5 dielectric layers
 - □ Use screen printing; min. via size 8 mils, ~10 mil spacing
- Four types of hybrids
 - □ Layer 0: two-chip
 - □ Layer 1: six-chips, double-ended
 - □ Layer 2-5: ten-chips, double-ended
 - o axial and stereo (only different in width)
- ◆ Use 50 pin AVX 5046 connector

Prototypes

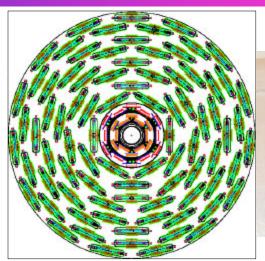

- Prototypes received from 2 vendors
- Stuffed w/untested prototype SVX4 chips
 - □ Able to readout on first attempt!
- ◆ In the process of qualifying both vendors


L2-5 axial Hybrid

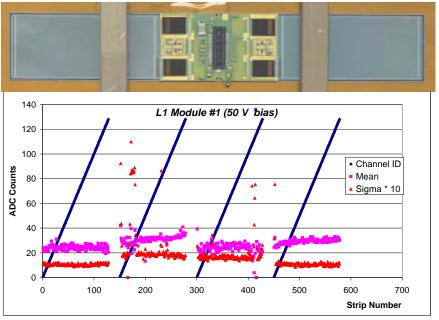
Layer 1 Readout Module

- Detector biased to 50V
- Noise slightly higher for chip 2 and 3
- Sigma of pedestal
 1 ADC count (no sensor)
 1.8 ADC counts w/ sensor
 Meets spec.
- Proof of principle that SVX4
 + Hybrid + Readout System work!
- Chip 2 and 3 wirebonded to sensor
- Tests continue

Summary of Prototyping


			First Prototype		Second Prototype	
Component	Vendor	Design	Ordered	Delivered	Ordered	Delivered
L0 Sensors	ELMA	✓	✓	✓		
	HPK	✓				
L1 Sensors	ELMA	✓	✓	✓		
LI Selisui s	HPK	✓	✓	✓		
L2 Sensors		✓	✓			
Analogue Cable	Dycx	✓	✓	✓	✓	✓
L0 Hybrid		✓				
L1 Hybrid	CPT	✓	✓	✓		
L2A Hybrid	CPT	✓	✓			
LZA Hybrid	Amitr.	✓	✓	✓		
L2S Hybrid	CPT	✓	✓			
Digital Cable	Honey	✓	✓	✓	✓	✓
Digital Cable	Basic	✓	✓	✓	✓	
Junction Card		✓	✓	✓		
Twisted Pr. Cable		✓	✓	✓		
Adapter Card		✓	✓	✓		
Purple Card		✓	✓	✓	✓	
Test Stand Elctr.		✓	✓	✓		

 Except for Layer O hybrids, have prototypes of all components in hand and no major issues have been encountered so far



Summary and Conclusions

- Potential for Higgs observation at Fermilab with 15 fb⁻¹
- Radiation damage forces a new silicon tracker at 2-4 fb⁻¹
- Improved b-tagging with smaller inner radius
- Higher rates require better pattern recognition; more layers and larger outer radius
- Silicon must be built quickly to capitalize on opportunity for discovery
- A robust, straight-forward design has been developed and prototyping is well underway
- Already have first fully functional prototype module
- Lehman Review comment "Never before was a project baselined in such a state of technical maturity"
- Final funding awaits Tevatron review underway currently

